Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

Q is empty.


QTRS
  ↳ AAECC Innermost

Q restricted rewrite system:
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

Q is empty.

We have applied [19,8] to switch to innermost. The TRS R 1 is

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The TRS R 2 is

process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The signature Sigma is {process, if2, if3, if1}

↳ QTRS
  ↳ AAECC Innermost
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, false) → EMPTY(fstsplit(m, app(map_f(self, nil), store)))
IF2(store, m, false) → MAP_F(self, nil)
IF1(store, m, false) → MAP_F(self, nil)
IF1(store, m, true) → FSTSPLIT(m, store)
APP(cons(h, t), x) → APP(t, x)
IF1(store, m, true) → EMPTY(fstsplit(m, store))
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
PROCESS(store, m) → LEQ(m, length(store))
LEQ(s(n), s(m)) → LEQ(n, m)
IF3(store, m, false) → SNDSPLIT(m, app(map_f(self, nil), store))
IF3(store, m, false) → APP(map_f(self, nil), store)
LENGTH(cons(h, t)) → LENGTH(t)
IF1(store, m, false) → FSTSPLIT(m, app(map_f(self, nil), store))
IF2(store, m, false) → SNDSPLIT(m, store)
IF3(store, m, false) → MAP_F(self, nil)
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
PROCESS(store, m) → LENGTH(store)
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
IF2(store, m, false) → APP(map_f(self, nil), sndsplit(m, store))
MAP_F(pid, cons(h, t)) → APP(f(pid, h), map_f(pid, t))
IF1(store, m, false) → APP(map_f(self, nil), store)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, false) → EMPTY(fstsplit(m, app(map_f(self, nil), store)))
IF2(store, m, false) → MAP_F(self, nil)
IF1(store, m, false) → MAP_F(self, nil)
IF1(store, m, true) → FSTSPLIT(m, store)
APP(cons(h, t), x) → APP(t, x)
IF1(store, m, true) → EMPTY(fstsplit(m, store))
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
PROCESS(store, m) → LEQ(m, length(store))
LEQ(s(n), s(m)) → LEQ(n, m)
IF3(store, m, false) → SNDSPLIT(m, app(map_f(self, nil), store))
IF3(store, m, false) → APP(map_f(self, nil), store)
LENGTH(cons(h, t)) → LENGTH(t)
IF1(store, m, false) → FSTSPLIT(m, app(map_f(self, nil), store))
IF2(store, m, false) → SNDSPLIT(m, store)
IF3(store, m, false) → MAP_F(self, nil)
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
PROCESS(store, m) → LENGTH(store)
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
IF2(store, m, false) → APP(map_f(self, nil), sndsplit(m, store))
MAP_F(pid, cons(h, t)) → APP(f(pid, h), map_f(pid, t))
IF1(store, m, false) → APP(map_f(self, nil), store)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 7 SCCs with 15 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(cons(h, t), x) → APP(t, x)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(cons(h, t), x) → APP(t, x)

R is empty.
The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(cons(h, t), x) → APP(t, x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MAP_F(pid, cons(h, t)) → MAP_F(pid, t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MAP_F(pid, cons(h, t)) → MAP_F(pid, t)

R is empty.
The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MAP_F(pid, cons(h, t)) → MAP_F(pid, t)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(h, t)) → LENGTH(t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(h, t)) → LENGTH(t)

R is empty.
The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(h, t)) → LENGTH(t)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LEQ(s(n), s(m)) → LEQ(n, m)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LEQ(s(n), s(m)) → LEQ(n, m)

R is empty.
The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LEQ(s(n), s(m)) → LEQ(n, m)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)

R is empty.
The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)

R is empty.
The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)

The TRS R consists of the following rules:

map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)

The TRS R consists of the following rules:

map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store)))) at position [2,0,1,0] we obtained the following new rules:

IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
QDP
                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)

The TRS R consists of the following rules:

map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m) at position [0,0] we obtained the following new rules:

IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)

The TRS R consists of the following rules:

map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m) at position [0,1,0] we obtained the following new rules:

IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))

The TRS R consists of the following rules:

map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
QDP
                                        ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

map_f(x0, nil)
map_f(x0, cons(x1, x2))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
QDP
                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m) at position [0] we obtained the following new rules:

IF2(store, m, false) → PROCESS(sndsplit(m, store), m)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
QDP
                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store)))) at position [2,0,1] we obtained the following new rules:

IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
QDP
                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m) at position [0,1] we obtained the following new rules:

IF3(store, m, false) → PROCESS(sndsplit(m, store), m)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
QDP
                                                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
QDP
                                                            ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))

The TRS R consists of the following rules:

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

app(nil, x0)
app(cons(x0, x1), x2)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
QDP
                                                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)

The TRS R consists of the following rules:

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store))) at position [2] we obtained the following new rules:

IF1(x0, 0, true) → IF2(x0, 0, empty(nil))
IF1(nil, s(x0), true) → IF2(nil, s(x0), empty(nil))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
QDP
                                                                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF1(x0, 0, true) → IF2(x0, 0, empty(nil))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
IF1(nil, s(x0), true) → IF2(nil, s(x0), empty(nil))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))

The TRS R consists of the following rules:

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
QDP
                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)

The TRS R consists of the following rules:

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2)))) at position [2] we obtained the following new rules:

IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
QDP
                                                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))

The TRS R consists of the following rules:

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule PROCESS(store, m) → IF1(store, m, leq(m, length(store))) at position [2] we obtained the following new rules:

PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
PROCESS(nil, y1) → IF1(nil, y1, leq(y1, 0))
PROCESS(y0, 0) → IF1(y0, 0, true)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
QDP
                                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
PROCESS(y0, 0) → IF1(y0, 0, true)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
PROCESS(nil, y1) → IF1(nil, y1, leq(y1, 0))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)

The TRS R consists of the following rules:

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
QDP
                                                                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(nil, y1) → IF1(nil, y1, leq(y1, 0))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)

The TRS R consists of the following rules:

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store))) at position [2] we obtained the following new rules:

IF1(nil, s(x0), false) → IF3(nil, s(x0), empty(nil))
IF1(x0, 0, false) → IF3(x0, 0, empty(nil))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
QDP
                                                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF1(nil, s(x0), false) → IF3(nil, s(x0), empty(nil))
IF1(x0, 0, false) → IF3(x0, 0, empty(nil))
PROCESS(nil, y1) → IF1(nil, y1, leq(y1, 0))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)

The TRS R consists of the following rules:

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
                                                                                      ↳ QDP
                                                                                        ↳ DependencyGraphProof
QDP
                                                                                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))

The TRS R consists of the following rules:

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
                                                                                      ↳ QDP
                                                                                        ↳ DependencyGraphProof
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
QDP
                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2)))) at position [2] we obtained the following new rules:

IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
                                                                                      ↳ QDP
                                                                                        ↳ DependencyGraphProof
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
QDP
                                                                                                    ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
                                                                                      ↳ QDP
                                                                                        ↳ DependencyGraphProof
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ UsableRulesProof
QDP
                                                                                                        ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)

The TRS R consists of the following rules:

length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
                                                                                      ↳ QDP
                                                                                        ↳ DependencyGraphProof
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ UsableRulesProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QReductionProof
QDP
                                                                                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)

The TRS R consists of the following rules:

length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)

The set Q consists of the following terms:

sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule IF2(store, m, false) → PROCESS(sndsplit(m, store), m) at position [0] we obtained the following new rules:

IF2(x0, 0, false) → PROCESS(x0, 0)
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF2(nil, s(x0), false) → PROCESS(nil, s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
                                                                                      ↳ QDP
                                                                                        ↳ DependencyGraphProof
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ UsableRulesProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QReductionProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
QDP
                                                                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF2(nil, s(x0), false) → PROCESS(nil, s(x0))
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(x0, 0, false) → PROCESS(x0, 0)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)

The TRS R consists of the following rules:

length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)

The set Q consists of the following terms:

sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
                                                                                      ↳ QDP
                                                                                        ↳ DependencyGraphProof
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ UsableRulesProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QReductionProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
QDP
                                                                                                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)

The TRS R consists of the following rules:

length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)

The set Q consists of the following terms:

sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule IF3(store, m, false) → PROCESS(sndsplit(m, store), m) at position [0] we obtained the following new rules:

IF3(nil, s(x0), false) → PROCESS(nil, s(x0))
IF3(x0, 0, false) → PROCESS(x0, 0)
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
                                                                                      ↳ QDP
                                                                                        ↳ DependencyGraphProof
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ UsableRulesProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QReductionProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
QDP
                                                                                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF3(nil, s(x0), false) → PROCESS(nil, s(x0))
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF3(x0, 0, false) → PROCESS(x0, 0)

The TRS R consists of the following rules:

length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)

The set Q consists of the following terms:

sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
                                                                                      ↳ QDP
                                                                                        ↳ DependencyGraphProof
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ UsableRulesProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QReductionProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
QDP
                                                                                                                            ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)

The TRS R consists of the following rules:

length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)

The set Q consists of the following terms:

sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1)))) we obtained the following new rules:

PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(s(z2), s(length(x1))))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
                                                                                      ↳ QDP
                                                                                        ↳ DependencyGraphProof
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ UsableRulesProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QReductionProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Instantiation
QDP
                                                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(s(z2), s(length(x1))))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)

The TRS R consists of the following rules:

length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)

The set Q consists of the following terms:

sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(s(z2), s(length(x1)))) at position [2] we obtained the following new rules:

PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(z2, length(x1)))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
                                                                                      ↳ QDP
                                                                                        ↳ DependencyGraphProof
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ UsableRulesProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QReductionProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Instantiation
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(z2, length(x1)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)

The TRS R consists of the following rules:

length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)

The set Q consists of the following terms:

sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
The remaining pairs can at least be oriented weakly.

IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(z2, length(x1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(IF1(x1, x2, x3)) = 1 + x1   
POL(IF2(x1, x2, x3)) = x1   
POL(IF3(x1, x2, x3)) = x1   
POL(PROCESS(x1, x2)) = 1 + x1   
POL(cons(x1, x2)) = 1 + x1 + x2   
POL(false) = 0   
POL(length(x1)) = x1   
POL(leq(x1, x2)) = 0   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(sndsplit(x1, x2)) = x2   
POL(true) = 0   

The following usable rules [17] were oriented:

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Narrowing
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ Narrowing
                                                                                      ↳ QDP
                                                                                        ↳ DependencyGraphProof
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ UsableRulesProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QReductionProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Instantiation
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ QDPOrderProof
QDP
                                                                                                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(z2, length(x1)))

The TRS R consists of the following rules:

length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)

The set Q consists of the following terms:

sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 3 less nodes.